2015-06-05
xredued04
三、说学法
通过对已经掌握的锐角三角函数推广到任意角的三角函数定义,,引导出三角函数在各个象限内的符号,会求任意角的三角函数,学会从现有的知识探索新的知识,善于发现问题,提出问题,归纳问题,从而达到解决问题的目的。
四、教学过程
总体来说,由旧及新,由易及难, 逐步加强,层层深入由初中的直角三角形中锐角三角函数的定义过度到直角坐标系中锐角三角函数的定义再发展到直角坐标系中任意角三角函数的定义给定定义后通过应用定义又逐步发现新知识拓展完善定义.
1引入: 练习:sin300= cos300= tan300=
那么3000,300000呢?
复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?
由学生回答:
SinA=对边/斜边
cosA=对边/斜边
tanA=对边/斜边
我们已经学习了锐角三角函数,知道它是以锐角为自变量,以比值为函数值的函数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?
2逐步拓展:在高中我们已经建立了直角坐标系,从直角三角形改为平面直角坐标系。
那么三角函数的定义能否也放到坐标系去研究呢?
把三角函数的定义发展到用终边上任一点的坐标来表示, 从而锐角三角函数可以使用直角坐标系来定义,自然地,要想定义任意一个角三角函数,便考虑放在直角坐标中进行合理进行定义了
设a是一个任意角,它的始边与x轴正半轴重合,在终边的终边上任取一点P(a,b),它与原点的距离r=>0,
表示三角函数;sin=, cos=, tan=,
(1) 叫做a的正弦,记作sina, sin=,
(2) x叫做a的余弦,记作cosa,即cosa=;
(3) ,叫做a的正切,记作tana,即tana=,。
我们将它们统称为三角函数。
从而得到
知识归纳一:任意一个角的三角函数的定义
提醒学生思考:由于相似比相等,对于确定的角A ,这三个比值的大小和P点在角的终边上的位置无关.