2016-06-12
luck_lee1101
三、解答题(本大题共5小题,共35分)
16.(本小题满分5分)已知关于x的一元二次方程x2-2x-a=0。
(1)如果此方程有两个不相等的实数根,求a的取值范围;
(2)如果此方程的两个实数根为x1、x2,且满足1x1+1x2=-23,求a的值。
17.(本小题满分5分)
如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,过点P作⊙O的切线,切点为C,连接AC。
(1)若∠CPA=30°,求PC的长;
(2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点M。你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,请求出∠CMP的值。
18.(本小题满分5分)
下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12 000元购买15张下表中球类比赛的门票:
比赛项目票价(元/场)
男篮1 000
足球800
乒乓球500
(1)若全部资金用来购买男篮门票和乒乓球门票,问这个球迷可以购买男篮门票和乒乓球门票各多少张?
(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想购买上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,问可以购买这三种球类门票各多少张?
19.(本小题满分10分)
一座拱桥的轮廓是抛物线型(如图所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m。
(1)将抛物线放在所给的直角坐标系中(如图所示),求抛物线的解析式;
(2)求支柱的长度;
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由。
20.(本小题满分10分)
如图①,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4。
(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标;
(2)如图②,若AE上有一动点P(不与A、E重合)自A点沿AE方向向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0
(3)在(2)的条件下,当t为何值时,以A、M、E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标。
【参考答案】
一、选择题
1.D 【解析】考查同底数幂相乘。
2.C 【解析】略。
3.A 【解析】略。
4.B 【解析】略。
5.C 【解析】展开后,扇形弧长为80π,扇形面积为12lR=12×50×80π=2 000πcm2。
6.A 【解析】M、P表示元素分别为直线和圆的两个集合,它们没有公共元素。故选A。
7.B 【解析】因-π4<α<π2,取α=-π6代入sinα>tanα>cotα,满足条件式,则排除A、C、D,故选B。
8.C 【解析】构造特殊函数f(x)=53x,显然满足题设条件,并易知f(x)在区间[-7,-3]上是增函数,且最大值为f(-3)=-5,故选C。
9.D 【解析】题中yx可写成y-0x-0。联想数学模型:过两点的直线的斜率公式k=y2-y1x2-x1,可将问题看成圆(x-2)2+y2=3上的点与坐标原点O连线的斜率的最大值,即得D。
10.C 【解析】因纬线弧长>球面距离>直线距离,排除A、B、D,故选C。
二、填空题
11.2或-8
【解析】略。
12.1a+3
【解析】略。
13.48°
【解析】略。
14.25种
【解析】C15C44+C25C33+C35C22=25
15.32
【解析】h=3,a=1,V=13Sh=13×34×1×6×3=32
三、解答题
16.解:(1)△=(-2)2-4×1×(-a)=4+4a
∵方程有两个不相等的实数根。∴△>0
即a>-1
(2)由题意得:x1+x2=2,x1·x2=-a
∵1x1+1x2=x1+x2x1x2=2-a,1x1+1x2=-23
∴2-a=-23∴a=3
17.解:(1)连接OC
由AB=4,得OC=2,在Rt△OPC中,∠CPO=30°,得PC=23
(2)不变
∠CMP=∠CAP+∠MPA=12∠COP+12∠CPA=12×90°=45°
18.解:(1)设购买男篮门票x张,则乒乓球门票(15-x)张,得:1 000x+500(15-x)=12 000,解得:x=9
∴15-x=15-9=6
(2)设足球门票与乒乓球门票数都购买y张,则男篮门票数为(15-2y)张,得:
800y+500y+1 000(15-2y)≤12 000
800y≤1 000(15-2y)
解得:427≤y≤5514。由y为正整数可得y=515-2y=5
因而,可以购买这三种门票各5张。