面试备考题库

咨询热线:02583689966

首页> 教师资格备考> 面试备考题库

教师资格证面试高中数学说课教案:二面角的一种求法

2015-06-03 xredued04


五、教学程序
1.教学思路
设疑导入→构建条件→形成公式→公式应用→教学反思。
2.教学环节安排
(一).情境设置:
习题1:教科书80页题10
设计意图:由此题与学生共同回顾二面角的定义及其求解方法,并且根据题设条件,由学生发现该二面角的求解由异面直线AC、DB的位置关系来确定,提出为什么异面直线可以确定二面角,异面直线怎样确定二面角呢?引出问题二,从而进入第二环节——探索研究。
(二)、探索研究:
问题二:
问1:什么是异面直线的公垂线?两异面直线有多少条公垂线?
问2:设异面直线a、b公垂线为l,则a、b、l三条直线可以确定多少个平面?
问3:这两相交平面可以构成两对二面角,这两对二面角大小有什么关系?(设计意图:到此完成由异面直线构造二面角)
问4:从四个二面角任选一个二面角,该二面角的大小与异面直线位置有什么关系?
通过问题的层层深入,让学生自己观察、思考得出异面直线的位置可以确定二面角的大小的结论。再通过教具的演示让学生发现线段AM、BN、AB、MN任意一个的改变都会影响异面直线的位置,说明这四条线段可以共同确定二面角,从而发现公式的结构,突破难点;
问5:令a∩l=A,b∩l=B,M∈a,N∈b且MA=m,NB=n,AB=d,MN=l,求二面角α―l―β。
通过问题5将异面直线的位置量化,由学生自己推导,得出二面角的余弦公式
设计意图:通过问题5设出四条线段的长,求二面角的大小,从做辅助线、确定二面角平面角,到在三角形中计算求值,最后整理解题过程,由学生自主解决,教师适时引导,多问学生为什么,纠正学生语言表达上的错误,提示解题不符逻辑关系的地方,让学生在相互补充,相互找不足的这一自我评价、自我调整过程中,完善推理过程,得出二面角的余弦公式。通过这一数学交流活动,暴露学生的思维过程,提高学生语言表达能力,培养学生合情推理能力,注重学生作为个体发展能力的同时,也注重培养学生协同合作共同探索、的精神。并且让学生体会数学学习不仅重在学习一个结论,而是注重学习的过程,让学生在自己发现结论、自己推得公式中体验成功。
问题三:用问题二的方法求解习题一
设计意图:巩固公式的应用,明确如何应用公式;通过对比公式与习题一的条件,让学生认识到本节所学求二面角的方法是对教科书习题一般化所得的结论,体会数学从“特殊”到“一般”,再从“一般”到“特殊”的研究过程。
问题四:将公式条件中二面角两半平面的线段放到了以棱上线段为公共边的三角形中,作为了两三角形的高。
设计意图:通过这一过程,进一步深化所推公式中量的理解,其作用是半平面用三角形表示,更有利于在柱体或锥体中解决二面角的求解问题;
(三)、巩固训练
习题2
1.(改编自教科书80页题11)把长、宽分别为4、3的长方形ABCD沿对角线AC折叠,使BD长为7/5,求二面角B―AC―D。
2.(教科书80页题11)把长、宽分别为4、3的长方形ABCD沿对角线AC折叠成直二面角,求顶点B与D之间的距离。
设计意图:
题1是对问题四结论的简单应用。此题题设是将平面图形折成立体图形,求形成的二面角的大小,巩固平面图形折叠过程中量的变化情况。
题2让学生认识:二面角余弦公式建立了四个线段、一个角五个量间的关系,知道其中任意四个,都可以求第五个量,加深对公式的认识,熟悉公式的变形应用。
习题3:(选自2005年湖南高考题)已知四边形ABCD是上、下底边分别为2和6,高为的等腰梯形,将它沿对称轴OO′折成直二面角,求二面角O―AC―O′的大小。
设计意图:让学生创设公式应用条件,自主解决问题,同时再次巩固立体空间中量的求解用平面解决的思想方法。
 

1 2 3

相关推荐 更多

热门活动