2015-10-10
xredued04
二、材料分析题
1.【参考答案】
教 师在设计问题时,首先考虑到的是问题的开放性,在数学探究过程中,设计出了大量的开放性、具有一定思维空间的问题。但是,这些问题同样存在目的性不强,答 案不着边际的弊端,学生在回答这类问题时,出现这样那样的答案。老师对他们的回答只能做出一些合理性的评价。但是,学生的回答和老师的评价使得我们的数学 课堂离我们心目中的理想的数学课堂却越来越远。所以,老师在设计问题时不仅要充分考虑问题的开放性,更要考虑设计问题的目的性,设计的问题应当明确,具体 可测,大部分学生能寻求到比较正确的答案。
2.【参考答案】
该案例适用于第二学段的各个年级,要求可以不同。可以分小组活动,分工调查关 键数据(如调查学校到北京的距离,如果是北京的学校就要改变长跑的目的地,比如,可以把目的地改为延安),学生分组集体讨论后,可以制订一个计划,自主提 出适合自己班级特点的“长跑方案”,比如,可以给男、女生提出不同的日跑量,提出哪一天跑到“中途某一个城市”,等等。
因此,这是一个灵活的开放问题。教师可以组织学生交流不同方案,同学之间评价不同方案的优缺点,推荐本班的最佳活动方案,丰富学生的活动体验。
3.【参考答案】
(1) 两位教师的案例都注重学生的实践操作。通过动手操作来理解直径和半径的特征及联系。B教师设计,是学生不断激活“内存”的过程。建构主义是非常强调个体的 经验的,个体的一切学习活动都是以经验为基础展开的,让学生充分调集和展示经验,是师生高效对话的前提。我们不仅要充分承认学生不是一张白纸。还要尽可能 了解学生已经有了哪些颜色。
(2)很明显,第二位老师已经为学生创设了一次成功的数学活动,我们可以预测这样的活动一定能让学生感受到了数学的无 穷魅力。这种魅力,一方面是因为它承接了学生原有的认知经验,学生感受到数学很简单、很平常、很好玩,有信心,有兴趣去学习。另一方面,学生通过多感官的 活动,探究这些亲切有趣的现象背后的原理,建立一定的数学模型,培养一定的数学能力,由此得到更多的发展空间和持续动力。
三、教学设计题
1.【参考答案】
(1) 从学生“学”的角度出发,挖掘、拓展学生的探索过程,让学生“像科学家一样去研究、发现”,使他们在获得数学知识的同时,思维能力、情感态度与价值观等诸 方面得到发展。同时,教师应从学生已有的知识结构出发,带着问题研究平行四边形,通过制作、猜想、验证进行本堂课的教学。在学生发现问题的过程中,把问题 作为教学的出发点,使学生自觉地进行知识迁移,进而对与旧知识密切相关的新知识进行深入思考,使学生在体会数学的魅力同时发展智慧。
教学目标:
①对比三角形,理解平行四边形容易变形的特性。培养学生观察比较、抽象概括、动手操作、空间想象等能力。
②通过观察、对比、合作交流、动手操作,使学生在探究中掌握平行四边形的有关知识,掌握发现问题、提出问题的学习方法。
③使学生感受到平行四边形不稳定性在生活中的广泛应用,感受到数学知识与现实生活的密切联系。在探究中体验学习的乐趣。
(2) 平行四边形的不稳定是个难点,针对这一难点设计如下活动:首先拿一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉。引导学生观察两组对边有什么 变化?拉成了什么图形?什么没有变?接下来,让学生自己动手,把准备好的长方形框拉成平行四边形,并测量两组对边是否还平行。然后,根据刚才的实验、测 量,引导学生概括出平行四边形具有不稳定性。最后说明三角形具有稳定性,不容易变形。平行四边形与三角形不同,容易变形,也就是具有不稳定性。这种不稳定 性在实践中有广泛的应用。请学生举出实际例子。
这样设计活动让学生经历知识与技能的形成与应用过程,不仅让学生经历了观察、实验、猜想、验证、推理与交流等数学活动,而且还让学生在现实生活中发现问题、解决问题,体会数学的价值,发展实践能力和创新精神。